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Demons
Non-linear registration is a key instrument for computational anatomy to study the morphology of organs
and tissues. However, in order to be an effective instrument for the clinical practice, registration algorithms
must be computationally efficient, accurate and most importantly robust to the multiple biases affecting
medical images. In this work we propose a fast and robust registration framework based on the log-
Demons diffeomorphic registration algorithm. The transformation is parameterized by stationary velocity
fields (SVFs), and the similarity metric implements a symmetric local correlation coefficient (LCC). Moreover,
we show how the SVF setting provides a stable and consistent numerical scheme for the computation of the
Jacobian determinant and the flux of the deformation across the boundaries of a given region. Thus, it pro-
vides a robust evaluation of spatial changes. We tested the LCC-Demons in the inter-subject registration set-
ting, by comparing with state-of-the-art registration algorithms on public available datasets, and in the
intra-subject longitudinal registration problem, for the statistically powered measurements of the longitudi-
nal atrophy in Alzheimer's disease. Experimental results show that LCC-Demons is a generic, flexible, efficient
and robust algorithm for the accurate non-linear registration of images, which can find several applications in
the field of medical imaging. Without any additional optimization, it solves equally well intra & inter-subject
registration problems, and compares favorably to state-of-the-art methods.

© 2013 Elsevier Inc. All rights reserved.
Introduction

In the recent past, computational anatomy acquired an increasing
weight in the analysis ofmedical data and several methods have been de-
veloped to study organs in the cross-sectional and longitudinal settings. The
cross-sectional approach evaluates the geometrical differences between
subjects and highlights the morphological differences between clinical
groups. The longitudinal perspective evaluates the changes in time from
serial data of the samesubject acting ashis owncontrol, and ismoreuseful
in detecting the subtle changes related to biological processes.

The key instrument of computational anatomy is non-linear registra-
tion, which allows to retrieve morphological differences as deformation
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fields. A great variety of registration techniques have been proposed in
medical imaging, depending on the practical application and the theo-
retical requirements.

Non-linear registration in medical imaging: technical and clinical
requirements

Assessing the performance of non-linear registration methods is a
quite controversial issue, since there is not a univocal way to define
registration accuracy and reliability. We can however define a general
set of good properties that a registration method should satisfy for the
successful use in research and clinic. For this purpose we identify two
main applications of non-linear registration: analysis of correspon-
dences and analysis of deformations.

The former application concerns the comparison of anatomical re-
gions between different subjects. In this case the registration algo-
rithm should provide a good alignment of homologous anatomical
structures. This requirement is classically tested in the inter-subject
registration setting, by providing overlap and similarity measures
with respect to ground truth data, given for example by manual seg-
mentation of selected anatomical regions.

The second application concerns the analysis and quantification of
anatomical changes by studying the estimated deformations. A classical
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example of such an application is the Tensor Based Morphometry
(TBM) (Riddle et al., 2004) based on the analysis of the Jacobian deter-
minant of the deformations. In this case, rather than looking for a per-
fect alignment of anatomical regions, we are interested in working
with smooth and plausible deformations. In fact, even though a good in-
tensity matching of images can be obtained with very spiky and
unregular deformations, they can hardly be used for reliable statistical
comparisons and quantifications. For instance the statistical power in
TBM studies largely depends on the smoothness of the Jacobian deter-
minant maps associated to the deformations. On the same line, we are
interested in the plausibility of the registration in the clinical context.
When applied to the longitudinal setting, a reliable non-linear registra-
tion framework should provide meaningful and robust measures of an-
atomical changes. The issue was explained in an exemplary way in Fox
et al. (2011), where the authors discussed a clear example of plausible
non-linear registration result in Alzheimer's disease, which however
led to inconsistent quantifications of volume change. The problem is in-
trinsically linked to the robustness of the registration, to regularity is-
sues, and more generally to the consistency of the numerical schemes
adopted by the framework, for instance for the computation of the Jaco-
bian determinant associated to the transformation. These points are sel-
dom discussed when presenting novel registration methods.

Finally, since non-linear registration is more and more applied to
the analysis of large datasets, computational efficiency and flexibility
are becoming important and desired requirements for the application
in clinic and research.

In this work we present the LCC-demons, a reliable and general new
registration framework aimed to jointly satisfy the following set of
fundamental requirements: accuracy, robustness to bias, theoretical
solidity coupled with numerical efficiency, and consistency of the an-
atomical measures. We detail in the following sections the above re-
quirements and the related critical issues.

Similarity measures to robustly detect the anatomical differences

In non-linear registration the deformation is found by optimizing
a measure of similarity between two images. Thus, the quality of
the retrieved deformations greatly depends on the choice of this
metric. A classical similarity measure is the sum of squared differ-
ences (SSD) of the intensities, which is completely driven by the
global intensity differences (Bajcsy et al., 1993; Stefanescu, 2005).
Despite the simple numerical implementation, this metric is highly
sensitive to the intensity biases which affect the medical images.
Bias correction is often performed prior to image registration in
order to remove global intensity inhomogeneity (Hou, 2006; Sled
et al., 1998; Tustison et al., 2010), but this is often not sufficient
to remove local changes in the bias field. For this reason, more com-
plex similarity criteria able to account for the bias have been pro-
posed. For instance the (normalized) correlation criterion assumes
a global affine relationship between the intensities in the images,
to account for global multiplicative and additive bias (Collins et
al., 1995; Dong and Boyer, 1995), while the (normalized) mutual in-
formation (NMI) does not require any parametric assumption on
the relationship between the intensities, and is based on the global
joint intensity histogram (Maes et al., 1997; Studholme et al., 1996;
Wells et al., 1996). The robustness of NMI comes at the price of
the computation of the histogram, and thus of complex optimiza-
tion schemes.

More importantly, all the above criteria are global, i.e. they assume
a uniform bias distribution over the image space. However in medical
images the bias is frequently locally varying, and in this case a global
similarity measure might lead to wrong estimations of the deforma-
tions. By assuming that the information in the image is locally suffi-
cient to estimate the intensity bias, in Cachier et al. (2003) the
authors proposed a local implementation of the correlation criteria.
Interestingly, such a framework led to an efficient optimization
scheme based on Gaussian convolutions and computed through the
classical Demons registration setting.

The local correlation coefficient (or local cross correlation) is
based on the implicit estimation of the local affine scaling parameters
of the intensities (additive plus multiplicative), and was later used in
several successful registration algorithms as a good trade-off between
the SSD, in which there are no hidden parameters to estimate, and the
very unconstrained Mutual Information, which requires the estimation
of the joint probability distribution of the intensities in the images
(Avants et al., 2008; Hermosillo and Faugeras, 2004; Jolly et al., 2010).
The local formulation of LCC is indeed possible thanks to the low num-
ber of hidden parameters which enable a reliable estimation in reason-
ably small neighborhoods, while this is not the case for MI.

Diffeomorphic registration: mathematical formulation and numerical
efficiency

The new-generation non-linear registration algorithms perform
diffeomorphic registration by parameterizing the deformations by
the flow of time varying or stationary tangent velocity fields. The
use of diffeomorphisms provides a rich mathematical setting for ele-
gant and grounded methods for atlas building (Joshi et al., 2004),
group-wise (Bossa et al., 2007), and longitudinal statistical analysis
of deformations (Avants et al., 2007; Davis et al., 2007; Durrleman
et al., 2012; Lorenzi et al., 2011).

Diffeomorphic registration was introduced with the large defor-
mation diffeomorphic metric mapping setting (LDDMM) (Beg et al.,
2005), which parameterizes the deformations with time varying ve-
locity fields, and in Avants et al. (2008) an implementation of the
LDDMM based on the local cross correlation criteria was proposed.
However, the LDDMM has high computational cost (usually reported
in order of hours on standard computers) that might prevent the in-
tensive application on large dataset, or on high resolution data.

In order to find an optimal compromise between accuracy and
computational efficiency, it was proposed in Arsigny et al. (2006) to
parameterize diffeomorphic transformations with stationary velocity
fields (SVFs). The framework was used in different registration set-
tings (Ashburner, 2007; Bossa et al., 2007; Modat et al., 2011;
Vercauteren et al., 2008b), and was applied to several clinical prob-
lems (Lombaert et al., 2012; Lorenzi et al., 2011; Mansi et al., 2011;
McLeod et al., 2012; Seiler et al., 2011, 2012; Sweet and Pennec,
2010). The computational time reported for the registration parame-
terized by SVF is usually of dozens of minutes. In light of these results,
the SVF registration might represent a powerful clinical instrument
for the evaluation of the morphological changes in organs, due to
its high flexibility and efficiency. However, standard SVF based algo-
rithms such as the log-Demons (Vercauteren et al., 2008b) are
based on the sum of squared differences criteria (SSD), which is not
robust to the intensity bias affecting the medical images and might
limit the applicability of such a framework in the clinical context.

Consistent measures of spatial changes from local to regional scale

In order to provide a useful measure of anatomical changes for
clinically oriented applications, a registration framework should be
able to consistently quantify the changes at different spatial scales.

Classically, non-linear registration was used to provide local
measures of change at the finer scale (voxels, meshes) to be used in
group-wise statistical analyses of morphological differences. Among
the many techniques we can find the voxel compression maps
(VCM) (Fox et al., 2001), the voxel/tensor-based morphometry
based on the Jacobian determinant of the deformation (VBM, TBM)
(Ashburner and Friston, 2000; Riddle et al., 2004), the RAVENS
maps (Resnik et al., 2000), and the cortical pattern analysis (Thompson
et al., 2003). However, measures at the voxel level are sensitive to biases
and are variable across subjects.
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Global measures of regional changes are more commonly used in
clinical practice, to quantify regional volumes on selected anatomical
structures. These measures are usually quantified by segmentation:
for instance, the boundary shift of anatomical regions of interest
(ROI) (FreeBorough and Fox, 1997) is currently used to evaluate the
longitudinal volume changes in time series of images (Leung et al.,
2009). As a drawback, methods based on segmentation do not allow
to model the anatomical differences, for instance by voxel-wise statis-
tical analysis or by extrapolating longitudinal observations, which is
something that is possible with non-linear registration.

Global measures of average volume change can be estimated from
local measures by integration of the Jacobian determinant of the
deformation in selected regions (Boyes et al., 2006; Camara et al.,
2008). Even though the Jacobian determinant is a largely used index
of volume changes associated to anatomical deformations, it comes
with some important issues that should be accounted for. First, the
computation of the Jacobian matrix requires to evaluate spatial deriv-
atives which are usually done by finite differences on the image grid,
and it is well known that they are highly sensitive to the approxima-
tion introduced by the discretization. Moreover, the impact of the nu-
merical approximations is even larger if we consider that the Jacobian
determinant is basically a cubic polynomial of the values of the vector
field. Second, experimental evidence showed that the logarithmic
transformation of the Jacobian determinant might be more appropri-
ate in morphometric studies, since it provides non-skewed quantities
(Leow et al., 2007). As a drawback, the log-Jacobian determinant does
not represent anymore the volume change, and thus lacks a precise
biological interpretation.

Other quantifications of spatial changes might then be considered.
For instance, the flux of the deformation across the boundary of a re-
gion is a measure of global morphological change that can be used for
growth and longitudinal volume change analyses (Chung et al.,
2001). The flux should theoretically be less sensitive to discretization
errors of the displacement field as it measures a linear polynomial of
the vector across the boundaries. However, since the flux requires the
computation of the vector's normal to the boundaries, the use of this
measure was very limited in the past due to the high sensitivity to
segmentation errors.

Paper organization and summary

The present work proposes a novel symmetric diffeomorphic regis-
tration framework based on SVFs, which implements the LCC as the
similarity measure. We show that our registration is at the same
time accurate, robust to the intensity biases and to the asymmetric
image resampling. Moreover, we contribute with novel numerically
stable and efficient methods to compute the Jacobian determinant
and the flux of the deformation across boundaries, in order to provide
consistent measures of anatomical changes from the local to the re-
gional level.

In the section LCC-Demons: Symmetric Unbiased Diffeomorphic
Registration we introduce the symmetric LCC-Demons, a registration
framework based on the log-Demons which implements the symmet-
ric local Correlation Criteria (LCC) as a similarity measure. While the
LCC similarity metric is well known in the literature, our contribution
is to propose a new intrinsically symmetric version of it. In the section
Stable and consistent measures of brain changes: from voxel to
regional level we derive from the resulting SVF a spatially robust
and consistent evaluation of the morphological changes from the
voxel to the regional level. In fact we show that the SVF framework
provides both stable voxel-by-voxel estimations of the Jacobian de-
terminant, and consistent measures of regional changes given by
the flux of the deformation across boundaries, which is obtained
by the integration of the log-Jacobian determinant. Interestingly,
with our framework the flux of the deformation is computed by a vol-
ume integral, which consequently leads to more robust and reliable
measures of volume change. The presented method is validated in
the section Registration accuracy: evaluation on public datasets by
comparing our algorithm against state-of-the-art registration algo-
rithms for the accuracy in inter-subject registration, and in the
section Measuring the longitudinal changes in Alzheimer's disease
for the longitudinal atrophy measurements in Alzheimer's disease.
The resulting longitudinal atrophy measures are compared to the
ones obtained by the BSI algorithm (FreeBorough and Fox, 1997),
a validated measure of brain atrophy currently employed in the
clinical setting.

LCC-Demons: symmetric unbiased diffeomorphic registration

The log-Demons algorithm

Diffeomorphisms parameterized by stationary velocity fields (SVFs)
LetΩ be the spatial domain of a given image F, and let consider the

manifold Diff(Ω) of automorphisms of Ω. The log-Demons algorithm
estimates the diffeomorphic transformation ϕ ∈ Diff(Ω) which mini-
mizes the intensity difference between a fixed image F and a moving
image G (Vercauteren et al., 2008b). Denote by TidDiff(Ω) the tangent
space of Diff(Ω) at the identity. The deformation ϕ belongs to the
one-parameter subgroup of diffeomorphisms generated by tangent
SVFs of TDiffid(Ω). The one-parameter subgroup of a SVF v is the
unique solution of:

∂ϕ x; tð Þ
∂t ¼ v ϕ x; tð Þð Þ; ð1Þ

with initial condition ϕ(x, 0) = id. The one-parameter subgroup
ϕt(x) = ϕ(x, t) is an additive group with respect to the real parameter
t: ϕs + t(x) = ϕ(x, s) ∘ ϕ(x, t) = ϕ(x, s + t). The transformation ϕ
is then defined as the Lie group exponential map exp(v) = ϕ(x, 1) =
ϕ(x).

The use of SVFs simplifies the LDDMM formulation and leads to a
good compromise between theory and efficiency for computationally
tractable registrations. For example, the exponential operation is effi-
ciently implemented in the log-Demons algorithm with the “scaling
and squaring” scheme (Arsigny et al., 2006) by taking advantage of
the additive property of the elements of the one-parameter sub-
groups. This allows to compute the final parameterization as the re-
cursive composition of successive exponentials (Algorithm 1).

Algorithm 1. Computing the transformation ϕ = exp(v) parameter-
ized by a SVF v: Scaling and Squaring for the Lie group exponential.

1. Scaling step.
Choose N so that 2−Nv is “small”.

2. Compute a first approximation of ϕ0 ← exp(2−Nv) ≈ id + 2−Nv.
3. Squaring step.

For k = 1 to N do ϕk ← ϕk − 1 ∘ ϕk − 1.

Log-Demons registration energy
In the log-Demons framework, the registration of the images F and

G is achieved through the alternate minimization of the following en-
ergy, which is optimized with respect to the transformation SVF v,
and to the auxiliary correspondence field parameterized by a SVF vx
(Vercauteren et al., 2008b):

E v; vx; F;Gð Þ ¼ 1
σ2

i

‖F−G∘ exp vxð Þ‖2L2

þ 1
σ2

x
‖ log exp −vð Þ∘ exp vxð Þð Þ‖2L2 þ

1
σ2

T

Reg vð Þ:
ð2Þ

Here the L2 norm is the standard Euclidean norm, while the
parameter σi relates to the noise in the images, σx controls the
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uncertainty of the matching in the coupling term, and σT the regular-
ization strength.

The Baker–Campbell–Hausdorff (BCH) formula describes the
composition of transformations in the log-space (Bossa et al., 2007):

BCH v;wð Þ ¼ log exp vð Þ∘ exp wð Þð Þ ¼
¼ v þw þ 1

2
v;w½ � þ 1

12
v; v;w½ �½ �− 1

12
w; v;w½ �½ � þ…:

By using the notation δv = BCH(−v, vx) = log(exp(−v) ∘ exp(vx))
for the so-called update field, we can rephrase the coupling term of
(2) as ‖δv‖

2
L2 .

The minimization of the above energy is alternatively operated
with respect to the two variables v and vx in two steps:

• Step1. Optimization of the similarity. Given v, the energy

Esym v; δv; F;Gð Þ ¼ 1
σ2

i

‖F−G∘ exp vð Þ∘ exp δvð Þ‖2L2 þ
1
σ2

x
‖δv‖2L2 ; ð3Þ

is optimized for δv, and hence for the correspondence parameter
vx = BCH(v, δv), to find an un-regularized correspondence vx that
matches the images F and G. The Gauss–Newton optimization
leads to a closed form solution for the update δv, which is then effi-
ciently composed with v by using the BCH formula.

• Step2. Regularization. Given vx, the functional

Ereg v; vxð Þ ¼ 1
σ2

x
‖ log exp −vð Þ∘ exp vxð Þð Þ‖2L2 þ

1
σ2

T

Reg vð Þ ð4Þ

is optimized with respect to v. In the log-Demons the zeroth order
approximation of the BCH formula δv = BCH(−v, vx) ≃ −v + vx
is normally used. With this choice, by following Mansi et al.
(2010) we obtain a closed form by convolution for the regulariza-
tion step. When the criterion Reg is conveniently chosen,2 the opti-
mal v is obtained in the Fourier domain and corresponds to the
Gaussian smoothing v = Gσ ∗ vx, which leads to Laplacian-like reg-
ularization of the velocity field vx. In addition to this, the standard
log-Demons registration implements a fluid-like regularization of
the update field Gσ f

� δv, which corresponds to the choice of the
projection of the update field into a smoother space of velocity
fields.

Symmetric forces in the log-Demons

In the log-Demons algorithm, the estimation of the SVF v is unbiased
with respect to the choice of fixed and moving image. In fact it is
symmetrically computed by minimizing the energy Esym

old = ||F − G ∘
exp(v)||2 + ||F ∘ exp(−v) − G||2. The symmetrization comes straight-
forwardly from the SVF parameterization of the deformations, and is
optimized by averaging the solutions given by the two separate terms.
However the strategy requires the separated optimization of both
correspondence terms, and might be computationally costly in case of
similarity termsmore complex than the standard sum of squared differ-
ences implemented in the log-Demons.

In this paper we propose to symmetrize a given criteria by opti-
mizing in the half-way space, reached by resampling both fixed and
moving images in a single energy term. This way the symmetric defor-
mation can be simultaneously computed with a single optimization
procedure. This can be easily formulated within the SVF framework
by considering F∘ exp − v

2

� �
and G∘ exp v

2

� �
.

2 For instance by choosing the infinite order Tikhonov regularizer proposed in
Cachier and Ayache (2004):

Reg vð Þ ¼ ∫Ω

X∞
k¼1

αk ∑
i1þ…þik¼k

‖∂i1…∂ik v‖
2
= σ2k

d k!
� � !
For instance, letDsym v; F;Gð Þ ¼ F∘ exp − v
2

� �
−G∘ exp v

2

� �
be the sym-

metric difference of intensities for a transformation parameterized
by the SVF v. Then the square of this residual image is the
symmetric sum of squared difference (SSD) energy ESSDsym v; F;Gð Þ ¼
‖F∘ exp − v

2

� �
−G∘ exp v

2

� �
‖
2
.

We show in Appendix A that in this case the optimization of the
proposed symmetric SSD is consistent with the symmetric optimiza-
tion used in the standard log-Demons algorithm.

Symmetric LCC in the log-Demons

In the standard log-Demons algorithm the correspondence field is
given by the minimization of the sum of squared difference (SSD) be-
tween the intensities of the two images, which is not robust to the
local intensity biases. In order to avoid mistaking spurious intensity
variations for morphological differences, we propose to adapt the
log-Demons framework to the local correlation coefficient (LCC), by
following Cachier et al. (2003).

Consider the image F, and let F ¼ Gσ � F xð Þ be the local mean
image defined by Gaussian smoothing Gσ with a kernel size σ. The
LCC is defined as:

ρ F;Gð Þ ¼ ∫Ω
FGffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 ⋅G2

p ;

The LCC similarity ρ measures how the intensities of the two images
are correlated within the local Gaussian neighborhood of size σ.

Given a pair of images F′ and G′, let us consider the symmetric
resampling F ¼ F ′∘ exp − v

2

� �
and G ¼ G′∘ exp v

2

� �
, and denote

ρ v; F ′;G′
� �

¼ ρ F;Gð Þ ¼ ∫Ω
F ′∘ exp − v

2

� �
G′∘ exp v

2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ′∘ exp − v

2

� �� �2 G′∘ exp v
2

� �� �2q :

If we replace the SSD in Eqs. (2) and (3) by the squared LCC, we
obtain the new correspondence energy

ELCCsym v; δv; F ′;G′
� �

¼ − 1
σ2

i

ρ2 BCH v; δvð Þ; F ′;G′
� �

þ 1
σ2

x
‖δv‖2L2 ¼

¼ − 1
σ2

i

ρ2 δv; F;Gð Þ þ 1
σ2

x
‖δv‖2L2 :

ð5Þ

We show in Appendix B that the optimization of Eq. (5) with re-
spect to the symmetric update by exp δv

2ð Þ of F and G can be computed
with a closed form formula:

δv ¼ − 2Λ
‖Λ‖2− 4

ρ2
σ2

i

σ2
x

;

where

Λ ¼
Gσ � F∇GT

� �
Gσ � FGð Þ −

Gσ � G∇FT
� �

Gσ � FGð Þ þ
Gσ � F∇FT

� �
Gσ � F2

� � −
Gσ � G∇GT

� �
Gσ � G2

� �
0
@

1
A:

Thus, our symmetric LCC criterion preserves the structure of the
original log-Demons.

Now that we have derived an efficient registration algorithm
which is robust to intensity biases, let us turn to the robust measure
of longitudinal changes for the resulting deformation parameters.

Stable and consistent measures of brain changes: from voxel to
regional level

The quantification of the amount of warping applied at each voxel
by the dense deformation field ϕ is usually locally derived from the
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Jacobian matrix ∇ϕ of the deformation in terms of determinant
det(∇ϕ), log-determinant log(det(∇ϕ)), trace Tr(∇ϕ), and the strain
tensor ∇ϕ∇ϕT. A global index of change can be extracted from the
local information by:

• Integration of the Jacobian determinant on the region of interest R.
This is an average measure of volume change.

• Evaluation of the flux of the deformation field across the boundaries
∂R of the region, i.e. the amount of vectors flowing through the
boundaries during the registration procedure. This value represents
the mean shift of the boundaries, i.e. how much do we move (in the
mean) along the normal to the surface enclosing the region. This
is the equivalent of the classical intensity based Boundary Shift
Integral (FreeBorough and Fox, 1997), in which the variation of
the intensities, or the“flow”, along the normal to the surface is
considered.

If the flux of a specific region is known, we can derive the ratio of
volume change by comparing the volume enclosed by the shifted
boundaries relative to the original one. However, the direct computa-
tion of the flux of a deformation is usually highly sensitive to the seg-
mentation of the boundaries. This limitation prevented the use of the
vector flux in favor of the more robust Jacobian determinant integra-
tion, while surrogate measures of the boundary shift were proposed
based on the comparison of regional segmentations (FreeBorough
and Fox, 1997; Smith et al., 2002).

Flux across surfaces from the log-Jacobian integration

In this section we provide a robust method for computing the
flux of the deformation within the log-Demons framework. By con-
sidering formula (1), we show in Appendix C that the following
equality holds:

∫∫∫R log det ∇ϕ xð Þð Þð Þdx ¼ ∫1
0flux∂R vjϕ x;hð Þ

� �
dh: ð6Þ

Eq. (6), specifies that the integral of the log-Jacobian determi-
nant of the deformation over a region R is equal to the flux of the ve-
locity field across the corresponding boundaries ∂R, consistently
computed along the exponential trajectory. Eq. (6) consistently
computes the flow of the vector field during the evolution described
by the SVF parameterization, and measures the flux of a vector field
through the region boundaries (right side of Eq. (6)) by scalar inte-
gration of the log-Jacobian determinant in the region volume (left
side of Eq. (6)).

The present framework replaces the surface integral with the
more stable volume integration, which simplifies and robustifies the
measure of the flux by attenuating the segmentation errors (and
relative erroneous boundary detection). This allows to deal with
anatomical uncertainties, for instance by scalar integration on
probabilistic masks. The difference between the Jacobian and the
log-Jacobian analysis becomes clear: the former quantifies the
mean volume changes of a region (or of a voxel as limit case),
while the latter quantifies the local mean shift of the boundaries
of that region (or voxel).

A stable numerical scheme for computing the Jacobian determinant

The computation of the Jacobian determinant det(∇ϕ) of a trans-
formation ϕ is usually performed by spatial differentiation of the
transformation using finite differences (Algorithm 2).

Algorithm 2. Classical computation of the Jacobian determinant by
finite differences

Given a discrete sampling ϕ of the transformation over the image
grid space {xi}:
1. Compute the Jacobian matrix Jϕ via finite differences. For instance,
with the forward scheme, the k, l entry is:

∇ϕk;l xð Þ ¼
ϕl xþ hek
� �

−ϕl xð Þ
h

;

where h is the scalar step size, ϕl(x) is the l-th component of the
transformation, and ek is the basis vector along the direction k.

2. Compute the determinant of∇ϕwith the preferrednumericalmethod.

However, finite differences are usually highly sensitive to the spa-
tial noise. They also critically depend on the discrete sampling which
might create instabilities in the case of large deformations, thus lead-
ing to incorrect Jacobian determinant estimation. For instance the
sampling of the deformation field in the image grid space might intro-
duce an unequal distribution of the vectors around a sink, and there-
fore induce negative Jacobian determinant estimations which are
mis-interpreted as spurious folding effects.

In this section, we provide a stable and consistent computation of
the Jacobian determinant according to the scaling and squaring meth-
od for the Lie group exponential (The log-Demons algorithm section).
From the additive property of the elements of the one-parameter sub-
groups, exp(v) = exp(v/2) ∘ exp(v/2), the following relationship for
the Jacobian determinant holds:

det ∇ exp vð Þð Þ ¼ det ∇ exp v=2ð Þð Þ∘ exp v=2ð Þ⋅det ∇ exp v=2ð Þð Þ: ð7Þ

The (log-)Jacobian determinant can then be recursively computed
according to Eq. (7). If we reliably initialize the computation of the
(log-)Jacobian determinant by finite differences on the scaled velocity
field v

2N
, we can then recursively compute it as detailed in Algorithm 3.

In this case, finite differences are used only on a sufficiently small
vector field in order to minimize the discretization errors. Then the
Jacobian determinant is evaluated accordingly to the exponential path
and is thus consistent with the definition of diffeomorphisms parame-
terized by SVFs. Moreover, the log-Jacobian determinant is defined in
terms of the divergence of the velocity and, by definition, the value of
the corresponding Jacobian determinant always remains strictly positive.

Algorithm 3. (Log-)Jacobian determinant by scaling and squaring

Given a deformation ϕ = exp(v):

1. Scaling step.
Choose N so that 2−Nv is “small”.

2. Compute a first approximation:

ϕ0 ¼ exp 2−Nv
� �

≈idþ 2−Nv;

L0 ¼ log det ∇ϕ0ð Þð Þ≈log 1þ∇⋅ v
2N

� �� �
≈∇⋅ v

2N

� �
;

J0 ¼ exp L0
� �

:

3. Squaring step.
For k = 1 to N do

ϕk ¼ ϕk�1∘ ϕk�1;

Lk ¼ log det ∇ϕkð Þð Þ ¼ log Jk�1∘ ϕk�1

� �
þ Lk�1

;

Jk ¼ exp Lk
� �

Return the Jacobian determinant JN, and the log-Jacobian determi-
nant LN.

Experiments

In this section we demonstrate the numerical stability of the
methods proposed in Stable and consistent measures of brain changes:



Fig. 1. Stable computation of the Jacobian determinant in the SVF setting. Upper row: detail from a pair of anatomical fixed and moving brain images. The difference image denotes a
mild non-stationary intensity bias detectable in the white matter. Even after bias field correction, the SSD criteria of the log-Demons models the general shift of the intensities by
estimating a contracting deformation field towards the white matter. Bottom row: corresponding Jacobian determinant maps estimated by the standard finite differences on the
final deformation field (left), and by the recursive scaling and squaring formula on the SVF (right). In the areas where the estimated deformation is maximal (crossing of blue
and red axis) the standard finite differences lead to negative values for the Jacobian determinant.

3 http://www.mindboggle.info/papers/evaluation_NeuroImage2009.php.

475M. Lorenzi et al. / NeuroImage 81 (2013) 470–483
from voxel to regional level section, and the accuracy of our new LCC
registration algorithm.

Jacobian determinant: scaling and squaring vs finite differences

We consider here a practical example with a pair of longitudinal
brain images from the ADNI dataset. As can be seen in the detail of
Fig. 1, even after bias correction (Tustison et al., 2010) and histogram
equalization, a persistent difference between the two images on the
white matter intensities is still appreciable. The intensity shift in
the white matter is detected by the SSD criteria of the log-Demons
as an anatomical difference which generates a sink at the center of
the area. This highly localized large deformation leads to negative
Jacobian determinants when estimated with the standard finite dif-
ferences of the sampled values on the image grid. On the contrary,
our method for computing the Jacobian determinant from SVF pro-
vides stable and consistent estimations.

Robustness to the intensity bias: a controlled example

We first tested the robustness of the LCC-Demons to the intensity
biases on a controlled experiment. We created a realistic simulated
anatomical deformation based on the deformation field that matched
the baseline scan (I0) of a patient to its 1-year follow-up, computed
using the log-Demons algorithm. The ventricular expansion was
extracted for the resulting SVF v in a box enclosing the ventricles. The
deformations in the remaining areas of the brain were imposed to be
negligible random noise. The resulting deformation field φ = Exp(v)
was used to warp the baseline scan I0 to generate the longitudinal
image with increased ventricular expansions. This pair of images was
then used as reference to test the robustness of the detection of the lon-
gitudinal changes in the ventricular reference region to the bias.

For this purpose, the intensities of the follow-up image were
corrupted by introducing spatially smooth random additive (±5%
of the mean baseline intensities) and multiplicative noise (range
[0.9–1.1]). The changes between baseline and generated follow-up
were evaluated with the LCC-Demons and the standard log-Demons
as average log-Jacobian determinant values measured in the ventri-
cles mask. The regularization parameters were set for both methods
as σfluid = 0.5, and σlaplacion = 1.5, while the LCC smoothing param-
eters was σLCC = 2. An histogram matching of the image intensities
was applied prior to the standard log-Demons registration.

As can be seen in Fig. 2, the LCC-Demons estimation remains sta-
ble regardless to the level of noise, while the standard SSD-based
log-Demons appears to be highly sensitive. This is reflected by the re-
gional integration of the log-Jacobian map in the ventricles mask: the
SSD criteria lead to unstable evaluations while the LCC measures re-
main consistent.
Registration accuracy: evaluation on public datasets

In Klein et al. (2009) the authors benchmarked several registra-
tion algorithms on a collection of publicly available brain images, to
compare the registration performance on the matching of a set of
manually labeled anatomical regions. This work represents a valuable
source of information for the comparison of new registration methods,
since the detailed description of the registration results is freely avail-
able.3 Interestingly, the authors found that the performance of the
registration algorithms was little affected by the choice of subject pop-
ulation, labeling protocol, and type of overlap measure.

In order to test the LCC-Demons we replicated the registration
pipeline proposed by Klein et al. (2009) on the data considered by
the authors (CUMC12, MGH10, LPBA40 and IBSR12 datasets). Within
each dataset, we non-linearly registered all the possible pairs of line-
arly aligned images, after an initial affine registration to the MNI
reference space (Fonov et al., 2009). The registration parameters
for the LCC-Demons were: σLCC = 5, σlaplacian = 1.5, σfluid = 0.5,
and σi/σx = 0.05, with a multi resolution scheme of 30 × 99 × 10 it-
erations (coarser to finer).

http://www.mindboggle.info/papers/evaluation_NeuroImage2009.php


Fig. 2. Synthetic experiment. A) Left: baseline and simulated follow-up ventricles expansion. Right: synthetic additive and multiplicative bias. Bottom rows: bias effect on the
log-Jacobian determinant maps for the deformations estimated by the Demons algorithm with B) LCC and C) SSD similarity criteria. The LCC estimation remains consistent inde-
pendently from the biases introduced.
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The registration accuracy between each source S and target T was
evaluated by the measures of target and union overlap, defined for a
specific anatomical region r respectively as

TOr ¼
Sr∩Trj j
Trj j and MOr ¼ 2

Sr∩Trj j
Srj j þ Trj j ;

where j·j is the regional volume.
In Fig. 5 we can observe the performance on the LPBA40 dataset in

terms of resulting mean target and union overlap on the 56 labeled
regions. The results produced by the LCC-Demons compare favorably
with those provided by the state-of-art algorithms, and in particular
improve the ones obtained by the classical Demons registration. In
Fig. 3. Example of registration result from the IBSR18 dataset. The result obtained with Syn
with the LCC-Demons is smoother.
the LPBA40 dataset the LCC-Demons perform significantly better
than most of the compared methods, except ART, and SyN. All the
reported mean differences were significant to the standard paired
t-test. When tested on the other datasets (Figs. 6–8), the only algo-
rithms that consistently provided better overlaps were again ART,
and SyN. The average registration time on the tested data was of
27 min (±2.3) for a single core on a Xeon platform 2.66 GHz quad
core, 4 Gb RAM.

We stress that the registration test was here performed without
any specific optimization of the parameters. Moreover, even though
high overlap ratios are usually indices of good registration accuracy,
these values do not take into account the smoothness of the resulting
transformation, nor the accuracy of the related measure of anatomical
leads to a more localized and spiky (non-smooth) deformation, while the one obtained

image of Fig.�2
image of Fig.�3


Fig. 4. Deforming a volumetric mask in order to maximize the flux across the boundaries. From left: reference image, associated brain mask, and the deformed mask which max-
imizes the flux of the longitudinal deformation. The last picture shows the log-Jacobian determinant map of deformation. It can be seen that the deformed mask is adapted to the
areas of maximum expansion.
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changes, e.g. of the associated Jacobian determinant. For instance,
Fig. 3 shows a comparison of the registration results for Syn and the
LCC-Demons for sample pairs of images of the IBSR18 dataset. Syn al-
gorithmwas applied by using the parameters specified in the paper of
Klein et al.4 It can be noticed that both algorithms provide reasonable
results in terms of image matching. However, the Jacobian determi-
nant map associated to the deformation estimated by Syn is more
localized and looks more spiky (non-smooth). We recall that a
smoother deformation potentially leads to more stable statistical
analysis and often to higher statistical power in group-wise studies.

Measuring the longitudinal changes in Alzheimer's disease

Experimental data

Data used in the preparation of this article were obtained from
the Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(adni.loni.ucla.edu). The ADNI was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies and non-profit organizations, as a
$60 million, 5-year public–private partnership. The Principal Investi-
gator of this initiative is Michael W. Weiner, MD, VA Medical Center
and University of California — San Francisco. ADNI is the result of ef-
forts of many coinvestigators from a broad range of academic institu-
tions and private corporations, and subjects were recruited from over
50 sites across the U.S. and Canada. For up-to-date information, see
www.adni-info.org.

Longitudinal pre-processing and registration

The baseline andone year follow-upbrain imageswere collected from
the ADNI dataset for a group of 200 healthy subjects and 141 patients af-
fected by Alzheimer's disease. For each subject, the follow-up images
were rigidly aligned to the baseline and the longitudinal changes were
evaluated by registration with the LCC-Demons algorithm (smoothing
sigma for the criteria σLCC = 2, σla placian = 1.5, and σfluid = 0.5).

Mask definition for regional measures

In standard deformation based morphometry, the amount of
measured regional brain atrophy is usually quantified by the scalar
integration of the average Jacobian determinant map of the deforma-
tion on a pre-defined region of interest (ROI).
4 http://www.mindboggle.info/papers/evaluation_NeuroImage2009/
SupplementaryMaterial_Klein_NeuroImage2009.pdf.
As showed in Fig. 3, morphological changes can be equally
explained by different registration models. In particular, different reg-
istrations can provide very different results in terms of smoothness of
the estimated deformations, which would finally lead to different lo-
calization and related quantification of the estimated volume changes.

In order to evaluate the anatomical changes consistently with re-
spect to the registration model, we propose here to adapt a given ana-
tomical ROI in order tomaximize the vector flux across the boundaries.
In this way the ROI is modified in order to account for the smoothness
of the deformation. In Vasilevskiy and Siddiqi (2002) it was shown
that, given a vector field v and a surface S, the maximal flux of v across
S is obtained by evolving the region along the direction

∂S
∂t ¼ ∇⋅vð Þn: ð8Þ

Thus, given an initial brain mask and a longitudinal deformation,
we can continuously deform the mask in order to maximize the flux
of the longitudinal deformation through its boundaries, i.e. adapt
the mask to the areas of significant longitudinal changes.

In our experimentswe computed the gray-whitematter tissuemask
with an automated procedure based on the FSL package tools for the au-
tomatic brain extraction and the tissue class segmentation (Patenaude
et al., 2011; Smith, 2002). The estimated mask was then flowed along
the longitudinal deformation according to Eq. (8) as Miþ1 ¼ Mi∘ ∂S

∂t (15
iterations) and then used for the longitudinal quantification (Fig. 4).

The whole brain changes were defined by the weighted Jacobian
determinant, which represents the average volume change within
the probabilistic mask, and by the weighted log-Jacobian determi-
nant, which represents the expected flux of the deformation through
the region's boundaries. If we approximate the region with a sphere
S1 having the same volume, we can compute the flux-derived volume
change by considering a radial field acting on the sphere S1 and hav-
ing the same flux. We obtain then a volume change index by compar-
ing the volume of the resulting shifted sphere S2 relatively to S1.

For sake of comparison the measurements were compared to the
KNBSI5 atrophy index (Leung et al., 2009) obtained using our initial
brain masks on the same processed data.

Longitudinal atrophy estimation

The average measures for the one-year whole brain changes esti-
mated by the LCC Demons are shown in Table 1. The volume changes
measured by the Jacobian determinant integration are consistent
with those derived from the flux and are respectively of 1.8% per
5 KNBSI is available at http://sourceforge.net/projects/bsintegral/.

http://www.adni-info.org
image of Fig.�4
http://www.mindboggle.info/papers/evaluation_NeuroImage2009/SupplementaryMaterial_Klein_NeuroImage2009.pdf
http://www.mindboggle.info/papers/evaluation_NeuroImage2009/SupplementaryMaterial_Klein_NeuroImage2009.pdf
http://sourceforge.net/projects/bsintegral/


Fig. 5. Inter-subject registration on the LPBA40 dataset: target and union overlap on the labeled regions. Yellow: LCC-Demons. Blue: significantly lower overlaps. Green: significantly
higher overlaps. White: no significant difference (p b 0.05, paired t-test on the labeled regions). Red lines: upper and lower quartiles of the LCC-Demons overlaps.
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year for the AD group and 1% per year for the healthy subjects. The
proposed results are consistent with the KNBSI estimations (last col-
umn), obtained on the same data. The sample size analysis provided
similar results, with the lowest score given by the flux associated to
the deformation (552 subjects). We specify that the KNBSI algorithm
was applied here using a different processing protocol than the one
proposed in Leung et al. (2009). In particular, the affine registration
Fig. 6. Inter-subject registration on the CUMC12 dataset: target and union overlap on the labe
higher overlaps. White: no significant difference (p b 0.05, paired t-test on the labeled regions
employed here was not symmetric, and there was no manual inter-
vention in the segmentation of the brain masks. Therefore, the
suboptimal processing protocol might explain the worse results in
terms of sample size analysis when compared to those reported by
the authors. Even though a detailed comparison of the processing
procedures is out of the scope of this work, we notice that the
methods performed similarly when applied to the same data.
led regions. Yellow: LCC-Demons. Blue: significantly lower overlaps. Green: significantly
). Red lines: upper and lower quartiles of the LCC-Demons overlaps.

image of Fig.�6
image of Fig.�5


Fig. 7. Inter-subject registration on the MGH10 dataset: target and union overlap on the labeled regions. Yellow: LCC-Demons. Blue: significantly lower overlaps. Green: significantly
higher overlaps. White: no significant difference (p b 0.05,paired t-test on the labeled regions). Red lines: upper and lower quartiles of the LCC-Demons overlaps.
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Conclusions and perspectives

In this work we proposed an efficient, accurate and robust regis-
tration framework for the estimation and quantification of anatomical
changes in medical images. We first introduced the LCC-Demons,
a diffeomorphic registration algorithm robust to intensity biases,
which extends the standard log-Demons algorithm by preserving
the simple numerical implementation and the related computational
Fig. 8. Inter-subject registration on the IBSR18 dataset: target and union overlap on the label
higher overlaps. White: no significant difference (p b 0.05, paired t-test on the labeled regi
efficiency. Second, we provided a new numerical scheme for the com-
putation of the Jacobian determinant of a deformation parameterized
by a stationary velocity field, which prevents the numerical inaccura-
cies induced by the finite differences, and is consistent with the
diffeomorphic parameterization. Finally, we explained the theoretical
difference between log-Jacobian and Jacobian analysis of deformation
fields, by showing that the surface integral of the flux of a stationary
velocity field is the regional integration of log-Jacobian determinant
ed regions. Yellow: LCC-Demons. Blue: significantly lower overlaps. Green: significantly
ons). Red lines: upper and lower quartiles of the LCC-Demons overlaps.
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Table 1
Longitudinal whole brain changes in Alzheimer's disease and healthy aging measured by the LCC-Demons as the average Jacobian determinant, flux across the boundaries, and flux
derived volume change (standard deviation on parenthesis). Last column: KNBSI atrophy rates obtained on the same data. Bottom row: estimated sample size associated to the
measures for detecting a 25% change in the AD trend when controlled to normal aging (80% power, p b 0.05 (Fox et al., 2000)).

Group LCC-Demons KNBSI

Jacobian Flux Flux derived % change % change

Ctrls 1.011 (0.0102) 0.252 (0.233) 1.09 (1.02) 1.069 (0.925)
AD 1.0186 (0.011) 0.409 (0.239) 1.81 (1.06) 1.714 (0.989)
Sample size (95% CI) 619 (305, 1154) 552 (309, 1260) 544 (315, 1255) 590 (332, 1328)
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associated to the deformations. This last contribution shows the
complementary information provided by the Jacobian and the log-
Jacobian determinant, and their different meaning when used as
index of anatomical changes in morphometric studies.

The proposed methods were extensively tested on large publicly
available dataset in both inter and intra-subject registration settings,
and the results were comparable with those obtained by the most
referenced methods for registration and atrophy quantification. The
experiments demonstrate that LCC-Demons is a candidate instrument
for both research and clinically oriented purposes, as already shown
in scientific works based on the presented method (Lorenzi et al.,
2012a,b,c).
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Appendix A. Symmetric forces in the log-Demons

In this section we show that the optimization of the symmetric
SSD proposed in the section Symmetric forces in the log-Demons is con-
sistent with the optimization scheme of the symmetric log-Demons al-
gorithm (Vercauteren et al., 2008a). For this purpose, we show that the
Taylor expansion of the corresponding energies leads to the same form
for the first order terms.

Let D(v, F, G) = F − G ∘ exp(v), be the difference of intensities for
a transformation parameterized by the SVF v, then the square of this
image is the classical sum of squared difference (SSD) energy
ESSD v; F;Gð Þ ¼ ‖F−G∘ exp vð Þ‖2L2 ¼ ‖D v; F;Gð Þ‖2L2 .

By considering the symmetric difference Dsym v; F;Gð Þ ¼ F∘ exp
− v

2

� �
−G∘ exp v

2

� �
this energy can be symmetrized into ESSDsym v; F;Gð Þ ¼

‖Dsym‖
2
L2 . The gradient of Dsym(v, F, G) is

∇Dsym ¼ −1
2

∇ F∘ exp − v
2

� �h i
þ∇ G∘ exp v

2

� �h i� �
: ðA:1Þ

We now recall the efficient second-order minimization scheme

(ESM) of the standard SSD, ‖D v; F;Gð Þ‖2L2 , employed in the symmetric
log-Demons algorithm (Vercauteren et al., 2008a). This optimization
method is based on the implicit symmetry constraint which assumes
an exact matching of the images for an optimal update exp(δuopt) of

the deformation. Indeed they imposed G ∘ exp(v) ∘ (δuopt) = F, or

equivalently that G∘ exp vð Þ∘ exp δuopt

2

� �
¼ F∘ exp − δuopt

2

� �
.

Let w = BCH(v, δu) be the deformation parameters after an
update of the SVF v by δu. The ESM optimization scheme proposed
in Vercauteren et al. (2008a) is based on the following Hessian-free
second order Taylor expansion of D:

D w; F;Gð Þ ¼ D v; F;Gð Þ þ 1
2

∇D w; F;Gð Þ þ∇D v; F;Gð Þð Þδuþ O ‖δu‖3
� �

;

ðA:2Þ

in which∇D(w, F, G) = −∇[G ∘ exp(v) ∘ exp(δu)], and∇D(v, F, G) =
−∇[G ∘ exp(v)]. Thanks to the exact matching assumption, the
authors obtain the simplified form − 1

2 ∇F þ∇ G∘ exp vð Þ½ �ð Þ for the
first order term of Eq. (A.2). The authors showed the practical
advantages of using this term for the optimization of ESSD in terms of
improved registration accuracy, and smoothness properties of the
resulting deformation. We notice that this term is related to the one
that we obtained with our symmetric update rule (Eq. (A.1)), since
they both involve the average of the gradients of F and G. We notice
however that with the ESM scheme only the image G is resampled,
while our scheme is symmetric.

Appendix B. Optimization of the LCC-Demons correspondence

Given a pair of images F′ and G′, consider the symmetric resampling
F ¼ F ′∘ exp − v

2

� �
, and G ¼ G′∘ exp v

2

� �
. In this section we derive the

http://www.itk.org
https://team.inria.fr/asclepios/software/lcclogdemons/
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update formula for the optimization of the LCC symmetric correspon-
dence in Eq. (5).

ELCCsym v; δv; F ′;G′
� �

¼ − 1
σ2

i

ρ2 δv; F;Gð Þ þ 1
σ2

x
‖δv‖2L2 : ðB:1Þ

The symmetric LCC correspondence considers the symmetric
resampling of the images, and is optimized with respect to the
symmetric composition by the update field exp δv

2

� �
. We have the

following Taylor expansion:

F
δv
2 ¼ F∘ exp − δv

2

	 

¼ F−∇FT ⋅ δv

2
þ O ‖δv‖2

� �
;

and

G
δv
2 ¼ G∘ exp δv

2

	 

¼ Gþ∇GT ⋅ δv

2
þ O ‖δv‖2

� �
:

The updated LCC term is then written in the following way:

ρ δv; F;Gð Þ ¼
Gσ � F

δv
2G

δv
2

h i
Gσ � F

δv
2

h i2	 
	 
1
2

Gσ � G
δv
2

h i2	 
	 
1
2
: ðB:2Þ

The updated factor at the denominator can be approximated as
follows:

Gσ � F
δv
2

� �2 ! !− 1
2
≃ Gσ � F2−F∇FT ⋅δv

� �� �− 1
2 þ O ‖δv‖2

� �

≃ Gσ � F2
� �� �− 1

2 1−
Gσ � F∇FT⋅δv

� �
Gσ � F2

� �
0
@

1
A

− 1
2

þ O ‖δv‖2
� �

≃ Gσ � F2
� �� �− 1

2 1þ
Gσ � F∇FT ⋅δv

� �
2Gσ � F2

� �
0
@

1
Aþ O ‖δv‖2

� �

≃ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gσ � F2

� �� �q þ
Gσ � F∇FT ⋅δv

� �
2 Gσ � F2

� �� �32 þ O ‖δv‖2
� �

:

In the same way, we have

Gσ � G
δv
2

h i2	 
	 
−1
2

≃ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gσ � G2

� �q −
Gσ � G∇GT ⋅δv

� �
2 Gσ � G2� �� �3

2
þ O ‖δv‖2

� �
;

and the expansion for the updated LCC term can thus be rewritten as

ρ δv; F;Gð Þ≃Gσ � F−∇FT
δv
2

	 

Gþ∇GT δv

2

	 
	 

Gσ � F

δv
2

� �2 ! !− 1
2

× Gσ � G
δv
2

� �2 ! !− 1
2
þ O ‖δv‖2

� �
:

By multiplying and by keeping only the first order term we obtain

ρ δv; F;Gð Þ≃ρ F;Gð Þ þ 1
2

Gσ � F∇GT ⋅δv−G∇FT ⋅δv
� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gσ � F2

� �
Gσ � G2

� �q

þρ
2

Gσ � F∇FT ⋅δv
� �

Gσ � F2
� � −

Gσ � G∇GT ⋅δv
� �

Gσ � G2
� �

0
@

1
Aþ O ‖δv‖2

� �
:

We denote ρ(F, G) = ρ. With the assumption of a sufficiently
smooth update field such that for each image I, Gσ ∗ (∇IT ⋅ δv) ≃
Gσ ∗ (∇IT) ⋅ δv, we finally obtain:

ρ δv; F;Gð Þ≃ρþ ρ
2

 
Gσ � F∇GT

� �
Gσ � FGð Þ −

Gσ � G∇FT
� �

Gσ � FGð Þ þ
Gσ � F∇FT

� �
Gσ � F2

� �

−
Gσ � G∇GT

� �
Gσ � G2� �

!
δv þ O ‖δv‖2

� �
¼ ρþ ρ

2
Λδv þ O ‖δv‖2

� �
;

with

Λ ¼
Gσ � F∇GT

� �
Gσ � FGð Þ −

Gσ � G∇FT
� �

Gσ � FGð Þ þ
Gσ � F∇FT

� �
Gσ � F2

� � −
Gσ � G∇GT

� �
Gσ � G2

� �
0
@

1
A:

The approximated squared LCC is therefore

ρ2 ¼ δv; F;Gð Þ≃ ρþ ρ
2
Λδv

� �2 ¼ ρ2 1þ 1
2
Λδv þ 1

4
δvTΛTΛδv

	 

;

whose gradient and Hessian are respectively ∇ρ2 δv; F;Gð Þ ¼ ρ2

2 Λ, and
H ρ2 δv; F;Gð Þ
� �

¼ ρ2

4 ΛTΛ. To optimal of B.1 is then given by the equation:

−H ρ2 δv; F;Gð Þ
� �

þ σ2
i

σ2
x
Id

 !
δv ¼ ∇ρ2 δv; F;Gð Þ;

whose solution is

δv ¼ � 2Λ

‖Λ‖2− 4
ρ2

σ2
i

σ2
x

;

thanks to the Sherman Morrison formula (Vercauteren, 2008).

Appendix C. Flux across surfaces from the integration of the
log-Jacobian determinant

In this section we prove equality in Eq. (6). Let ϕ be a transforma-
tion parameterized by the stationary velocity field v. The Jacobi's
formula for the derivative of the Jacobian determinant of a function
ϕ(x, t) states that:

∂det ∇ϕ x; tð Þð Þ
∂t ¼ det ∇ϕ x; tð Þð Þtr ∇ϕ x; tð Þ−1 ∂ ∇ϕ x; tð Þð Þ

∂t

	 

: ðC:1Þ

With reference to Eq. (1), by inverting the order of temporal and spa-
tial derivatives within the trace and by applying the chain rule we have:

tr ∇ϕ x; tð Þ−1 ∂∇ϕ x; tð Þ
∂t

	 

¼ tr ∇ϕ x; tð Þ−1∇∂ϕ x; tð Þ

∂t

	 


¼ tr ∇ϕ x; tð Þ−1∇ v ϕ x; tð Þð Þ½ �
� �

¼ tr ∇ϕ x; tð Þ−1∇v ϕ x; tð Þð Þ∇ϕ x; tð Þ
� �

¼ tr ∇v xð Þ∘ϕ x; tð Þð Þ ¼ ∇⋅ v ϕ x; tð Þð Þð Þ:

This way, Eq. (C.1) writes as

∂det ∇ϕ x; tð Þð Þ
∂t ¼ det ∇ϕ x; tð Þð Þ∇⋅ v ϕ x; tð Þð Þð Þ: ðC:2Þ

Given a function g(x, t), the solution of the ODE ∂f x;tð Þ
∂t ¼ f x; tð Þg x; tð Þ

is f(x,t) = exp(∫0
t g(x,t)) (up to a multiplicative constant). Taking the

log of f(x, t) = det(∇ϕ(x, t)) we get:

log det ∇ϕ x;1ð Þð Þð Þ ¼ ∫1
0∇⋅vj

ϕ x;hð Þdh: ðC:3Þ
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The result states that, in the SVF framework, the log-Jacobian de-
terminant of ϕ(x) = ϕ(x, 1) is the integral of the divergence of the
velocity field along the path described by the exponential.

Assuming now that R is a region volume in the domain of the vec-
tor field ϕ(x), we can integrate Eq. (C.3) to obtain:

∫∫∫R log det ∇ϕ x;1ð Þð Þð Þdx ¼ ∫1
0 ∫∫∫R∇⋅vj

ϕ x;hð Þdx
� �

dh: ðC:4Þ

We recall now the Divergence (or Ostrogradsky's) theorem, which
states that for a region R immersed in a vector field v the following re-
lationship holds:

∫∫∫R ∇⋅vð Þdx ¼ ∮∂Rv⋅n ¼ flux∂R vð Þ;

where the second part of the equality represents the flux of the vector
fields through the boundaries ∂R. Applying the Divergence Theorem
to Eq. (C.4) finally gives:

∫∫∫R log det ∇ϕ x;1ð Þð Þð Þdx ¼ ∫1
0flux∂R vjϕ x;hð Þ

� �
dh: ðC:5Þ
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